易配网 - 手机资讯、时事新闻、网络资料 - 极限挑战_极限_资讯导航。手机新闻导航
你的位置:易配网 > 手机资讯导航 > 极限挑战_极限_资讯导航

极限”相关资讯


极限挑战_极限_资讯导航:手机资讯_易配网……应有尽有,你知道的 :-)

请问极限的概念是什么?

极限的定义分为四个部分:

1、对任意的ε>0:ε在定义中的作用就是刻画出在x→x0时,f(x)可以无限接近于常数A,也就是∣f(x)-A∣可以任意小。为了达到这一要求,所以ε必须可以足够小。(考试中经常在ε上做文章)

2、存在δ>0:δ就是这个邻域的半径,x→x0所能取到的所有点就是(x0-δ,x0)∪(x0,x0+δ),这里x取不到x0.但是这个邻域δ到底有多大、距离x0有多远,我们不知道,也没有必要知道,只要知道δ是很小的一个数就可以啦。

3、0<∣x-x0∣<δ:自变量x→x0时,再次强调一下,x取不到x0这个点,但是可以取到x0附近和两侧的所有点。这就涉及到邻域的概念,邻域通俗讲就是以点x0为中心的附近和两侧所有点,是一个局部概念。

4、∣f(x)-A∣<ε:既然ε可以足够小,则f(x)可以无限接近于常数A,也就是f(x)→A,这里需要注意一点,虽然自变量x不能取到x0这个点,但是因变量f(x)是可以取到A的。

特别注意:函数在一点的极限存不存在和函数在这个点有没有定义没有关系。

扩展资料

极限的性质:

1、唯一性:存在即唯一

关于唯一性,需要明确x趋向于无穷,意味着x趋向于正无穷并且x趋向于负无穷;同理,x→xo,意味着x趋向于xo正且趋向于x0负。

比如:x趋向于无穷的时候,e^x的极限就不存在,因为x趋向于正无穷的时候e^x是无穷,x趋向于负无穷的时候e^x是0,根据极限存在的唯一性,所以这个极限不存在。

2、局部有界性:存在必有界

极限存在只是函数有界的充分条件,而非必要条件,即函数有界但函数极限不一定存在。

判别有界性的方法

(1)理论法:函数在闭区间上连续,则函数必有界。

(2)计算法:函数在开区间上连续且左右极限都存在,则函数有界。

(3)四则运算法:有限个有界函数的和、差、积必有界。

3、局部保号性:保持不等号的方向不变

极限大于零则在x→x0中函数大于零,把极限符号可以直接去掉,俗称“脱帽法”。函数非负,则在极限存在的条件下,极限非负。这个结论成立的前提条件一定不能忘,一定要验证一下函数极限是否存在。

参考资料来源:百度百科-极限

如何理解极限定义

可定义某一个数列{xn}的收敛:

设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都

 ,使不等式  在  上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。记作  或  。

如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得

 ,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。 

对定义的理解:

1、ε的任意性 定义中ε的作用在于衡量数列通项  与常数a的接近程度。ε越小,表示接近得越近;而正数ε可以任意地变小,说明xn与常数a可以接近到任何不断地靠近的程度。但是,尽管ε有其任意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;

又因为ε是任意小的正数,所以ε/2 、3ε 、ε2 等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。

2、N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使  成立,那么显然n>N+1、n>2N等也使  成立)。重要的是N的存在性,而不在于其值的大小。

3、从几何意义上看,“当n>N时,均有不等式  成立”意味着:所有下标大于N的  

都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某 ,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。

注意几何意义中:

1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点;2、所有其他的点

 (无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。

扩展资料:

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

参考资料:百度百科-极限

什么的极限为e?

很多极限都趋向于e 。

其中最基本的两个式子 ,(1+1/n)^n n趋于无穷大 和(1+n)^(1/n)  当n趋于0。

拓展资料:

极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。

数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。

函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。

设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当

|x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。

xlnx的极限 x趋向0 要步骤哦

当x→0时,xlnx的极限时0

解题过程:

原式等于lnx除以1/x,分子分母都是无穷,用洛必达法则法则,求导得到结果是-x,x趋于0,那么-x=0,故极限就是0。

洛必达法则要注意必须分子与分母都是0或者都是∞时才可以使用,否则会导致错误;如果洛必达法则使用后得到的极限是不存在的(振荡型的),不代表原极限就不存在,如lim(x→∞)sin x/x就不可以。

扩展资料:

求函数极限的方法有:

1、泰勒公式

(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。

2、面对无穷大比上无穷大形式的解决办法。

取大头原则最大项除分子分母,看上去复杂处理很简单。

3、无穷小与有界函数的处理办法

面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!

4、夹逼定理

(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

5、等比等差数列公式应用

对付数列极限,q绝对值符号要小于1。

6、各项的拆分相加

(来消掉中间的大多数。) 对付的还是数列极限可以使用待定系数法来拆分化简函数。

当x趋向0时,怎么求lim的极限

有三种计算方法,具体如下:

1、只要代入后,能算出一个具体的数值,就可以代入;

2、若代入后,虽然得不到一个具体的数值,但是能得到无穷大的结论,就写上“极限不存在”,极限是无穷大,无论是正是负,就是极限不存在。极限不存在,也是定式。也就是能立刻能确定结果的极限式。

3、若代入后,得到的是不定式,不定式有七种,就不能代入,而必须用极限计算的特别方法计算,而不能简单地直接代入。

扩展资料:

极限的性质:

1、ε的任意性 正数ε可以任意地变小,说明xn与常数a可以接近到任何不断地靠近的程度。但是,尽管ε有其任意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;

又因为ε是任意小的正数,所以ε/2 、3ε 、ε2 等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。

2、N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使

 

成立,那么显然n>N+1、n>2N等也使

 

成立)。重要的是N的存在性,而不在于其值的大小。

3、从几何意义上看,“当n>N时,均有不等式

 

成立”意味着:所有下标大于N的

 

都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某

 

,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。

注意几何意义中:1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点;2、所有其他的点

 

(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。

换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。

性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、保号性:若

 

(或<0),则对任何

 

(a<0时则是

 

),存在N>0,使n>N时有

 

(相应的xn<m)。

4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有

 

,则

 

(若条件换为xn>yn ,结论不变)。

5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列

 

也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。

6、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列

 

收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。

参考资料来源:百度百科--极限

参考资料来源:百度百科--微积分

数学上的极限 是什么意思?

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中。

此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。

扩展资料:

极限思想简介:

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。

用极限思想解决问题的一般步骤可概括为:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;

用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。

如果要问:“数学分析是一门什么学科”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

参考资料:百度百科---极限


本文内容来自网络,由 易配网 www.yiper.org整理。
手机大全
手机型号